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ABSTRACT

Recently, the mysterious In-Context Learning (ICL) prowess exhibited by Trans-
former architectures, especially in large language models (LLMs), has sparked
significant research interest. However, the resilience of Transformers’ in-context
learning capabilities in the presence of noisy samples, prevalent in both training
corpora and prompt demonstrations, remains underexplored. In this paper, in-
spired by prior research that study ICL ability using simple function classes, we
delve deeper into this issue by investigating the robustness of ICL Transformers
against noisy labels. Specifically, we conduct a thorough assessment demonstrat-
ing that Transformers exhibit notable resilience against diverse types of noise in
demonstration labels, surpassing prior simplistic observations. Furthermore, we
explore whether introducing noise into the training set, akin to a form of data aug-
mentation, enhances such robustness during inference. Our comprehensive find-
ings provide valuable insights into the resilience of Transformer models against
label noise, thereby laying a foundational framework for further advancements in
this domain.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have significantly succeeded in various real-world
applications. The Transformer architecture (Vaswani et al., 2017) has revealed an intriguing ability,
known as In-Context Learning (ICL) (Brown et al., 2020; Dong et al., 2023a), enabling it to learn
new tasks from a few input-output pairs during inference without altering any model parameters.
This mysterious property has sparked considerable research interest, particularly in investigating
ICL through simple function classes (Garg et al., 2023).

Large language models, such as Vicuna (Zheng et al., 2023) and Llama2 (Touvron et al., 2023),
trained on unsupervised real-world documents, may contain noisy information that affects their
in-context inference capability. Furthermore, recent studies (Wei et al., 2023b; Pawelczyk et al.,
2023) have shown that ICL outputs can be significantly influenced by the labels in the demonstra-
tion prompts, raising safety concerns. Inspired by these findings, this study aims to explore and
understand the ICL capability of transformers with noisy labels.

Noisy label learning (Natarajan et al., 2013) is extensively covered in modern machine learning
literature (Xiao et al., 2015; Wang et al., 2018; Wu et al., 2023), given the often costly and noisy
dataset collection process (Deng et al., 2009). However, despite numerous studies on language
models’ noisy label settings (Garg et al., 2021; Zhu et al., 2022), few have systematically addressed
these issues specifically for ICL. Further discussion on related work can be found in Appendix A.

Given the complexity of language distributions and tasks, directly formulating and analyzing ICL’s
robustness under noisy label conditions is challenging. To address this challenge, Garg et al. (2023)
suggest studying transformers’ ICL capability via simple function classes, specifically assessing
their ability to learn a function class in-context. Following this research approach, our work also
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investigates the noisy label robustness of ICL using simple function classes, offering a more inter-
pretable and straightforward framework.

It’s worth noting that while Garg et al. (2023) discussed this robustness, they only considered a
specific label noise distribution during the ICL inference phase. In contrast, our study conducts a
more comprehensive evaluation of this robustness, including how label noise during the training
phase influences it. Our findings indicate that transformers are quite robust to label noise in in-
context demonstrations, and this robustness can be further enhanced by incorporating noise into the
training set as a form of data augmentation.

Overall, our fruitful and comprehensive experiments provide interesting findings and conclusions
for understanding the robustness of in-context learning with noisy labels.

2 BACKGROUND AND PRELIMINARIES

Following the approach of Garg et al. (2023), we explore ICL’s properties through specific simple
function classes, focusing on the noisy linear regression task using linear functions as the primary
evaluation task. The overall pipeline involves: (1) training a transformer on a synthetic dataset
of prompts sampled from this function class; (2) evaluating the transformer’s ICL performance by
sampling a function from the class, as detailed below.

Transformer training with in-context demonstrations. In this approach, we build a syn-
thetic dataset to train a transformer, aiming for it to acquire ICL capability to learn linear re-
gression functions from in-context demonstrations. We consider the class of linear functions
F = fw|fw(x) = wTx,w ∈ Rd. Each training sample for the transformer is formulated as
P = (x1, fw(x1), · · · , xk, fw(xk)), with input samples and function parameter w both drawn
from an isotropic Gaussian distribution xi, w ∼ N(0, Id). For noisy-label learning, Gaussian noise
ϵi ∼ N(0, σ2

train) is added to the demonstrations, resulting in fw(xi) + ϵi. Following Garg et al.
(2023), we set d = 20 and construct a dataset with 10,000 prompts, each containing 100 demonstra-
tions.

Transformer inference with in-context demonstrations. After training the transformer
model Mθ(·) with parameters θ, ICL inference is conducted by prompting P =
(x1, fw(x1), · · · , xk, fw(xk), xq), where (xi, fw(xi) represent in-context demonstrations and xq is
the query input. For in-context inference, a ground-truth function fw from F is randomly sampled,
with w and xi both drawn from N(0, Id), resulting in fw(x) = wTx. In the noisy-linear regres-
sion, noise ϵi ∼ N(0, σ2

test) is added independently to each demonstration, resulting in fw(xi) + ϵi.
However, for calculating the loss, the ground truth of the query xq is kept as wTxq without adding
noise.

3 COMPREHENSIVE ROBUSTNESS EVALUATION OF NOISY ICL INFERENCE

In this section, we focus on the inference stage of ICL with different distributions of label noises,
including Gaussian, Uniform, Exponential, and Poisson distributions. We follow the same setting
as Garg et al. (2023) and deploy their released pre-trained GPT-2 model (Radford et al., 2019)
consists of 12 layers, 8 attention heads, and a 256-dimensional embedding for evaluation. However,
unlike Garg et al. (2023) that only consider Gaussian noise with σtest = 1, our evaluation is more
comprehensive and substantial.

Noise Distributions. In this experiment, we consider the following noise distributions: (1) Gaus-
sian distribution, ϵi ∼ N(0, σ2); (2) Uniform distribution, ϵi ∼ U(−

√
3σ,

√
3σ), where U(·, ·)

represents the uniform distribution; (3) Exponential distribution, ϵi = ϵ̂i − 1
σ and ϵ̂i ∼ Exp( 1σ ).

Note that by standardizing the noise, we produce noise that has zero means and captures the moral
of the exponential distribution Exp(·); (4) Poisson distribution, ϵi = ϵ̂i − σ2 and ϵ̂i ∼ P (σ2).
Similarly, by standardizing the noise, we produce noise that has zero mean and captures the moral
of the Poisson distribution P (·). We also consider the case of non-i.i.d. noise which is detailed in
Appendix C.2.
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Robustness evaluation. To evaluate the robustness of the transformer against label noises, we
compare its performance with other simple learning algorithms like (Garg et al., 2023) and also
define a metric named satisfactory accuracy, indicating a desirable performance in this task. More
details about the baselines and the metric are illustrated in Appendix B.

Experiment results. As discussed above, we employ the loss functions introduced above to evalu-
ate the transformer model and baseline models’ robustness across different noise types and varying
levels of label noise. We plot the representative comparison of the transformer and other baselines
under these settings in Figure 1, including σtest ∈ {0.1, 1}, and leave the comprehensive visu-
alization in Figure 3. In addition, we report some examples of test error and the corresponding
satisfactory accuracy under label noise in Table 2 in Appendix C.

Figure 1: Robustness Comparison under Different Noise Types and magnitudes.

Gaussian (σ = 0.1) Uniform (σ = 0.1) Exponential (σ = 0.1) Poisson (σ = 0.1)

Gaussian (σ = 1) Uniform (σ = 1) Exponential (σ = 1) Poisson (σ = 1)

Robustness analysis. As shown in these figures and tables, we can find that under most error levels,
loss functions associated with symmetrical distributions, transformers exhibit better performance in
comparison to other baselines. However, when confronted with higher noise levels, the ICL model
exhibits a challenge in ignoring label noise. Drawing from these discoveries, we deduce the presence
of a distinct threshold for each noise type, beyond which the transformer model’s performance
cannot outperform baselines. Once the noise level, denoted as σ, surpasses this threshold, the noise
perceptibly impacts the model, rendering it non-negligible in its influence on performance. From
the experiment results we estimate such thresholds for different noise distributions and summarize
them in Table 1.

Table 1: Estimated robustness threshold of label noise σ to perform comparably with the case of no
noise.

Noise Distribution Gaussian Uniform Exponential Poisson
Threshold σ 0.45 1.10 0.39 0.43

Further observations. Beyond the preceding analysis, we present several significant observations
from our experimental results:

i) Inadequate in-context examples. When the number of in-context examples falls below the input
dimension (d = 20), the model’s loss closely aligns with that of the least squares estimator.

ii) Near input-dimension number of examples. When the number of in-context examples nears
the input dimension (d = 20), significant errors arise in the least-square estimator, whereas the ICL
model’s accuracy continues to improve.

iii) Sufficient in-context examples. Once the number of in-context examples exceeds d = 20, the
ICL model’s performance rapidly and significantly improves.
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4 HOW TRAINING WITH NOISY DEMONSTRATIONS AFFECT ROBUSTNESS

Experiment Set-up. Following Garg et al. (2023), we still adopt the GPT-2 (Radford et al., 2019)
model architecture. To construct a noisy training set, instead of vanilla demonstrations {xi, fw(xi)},
we add Gaussian noises to the labels as {xi, fw(xi) + ϵi} with ϵi ∼ N(0, σ2). In this experiment,
we compare σtrain ∈ {0.01, 0.05, 0.1, 0.2, 0.5, 1}. In the following, we first show that the train-
ing of transformers can still converge well with moderate label noises, then further compare their
performance with training without label noises.

Training convergence with noisy labels. For each σ, we train the model with corresponding label
noise distribution and plot the training loss curve in Figure 2(a) with each line representing a model.
Note that the model associated with σ = 0 represents the case of no-label noise, which is exactly
the standard training setting. It is clear that for small label noises (σ < 0.5), the training is well
converged and the final loss is very close to the standard training. Even in the case of large noise
variance (σ = 0.5, 1), the training can still converge to a certain extent.

(a) Train loss curves. (b) Natural performance (c) σtest = 0.01 (d) σtest = 0.05

(e) σtest = 0.1 (f) σtest = 0.2 (g) σtest = 0.5 (h) σtest = 0.1

Figure 2: (a)Train loss curve, (b) natural ICL performance, (c-h) noisy ICL performance com-
parison for models trained with different σtrain. Each figure represents an inference noise level
σtest, and each line represents a model. The X-axis represents the number of in-context examples.

Robustness analysis with noisy label training. We further conduct in-context inference with dif-
ferent inference Gaussian noise σtest ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.5, 1} (the same as what we used
to train our models). To ensure that the experimental results are convincing and reproducible, we
repeated the experiment 10 times and took an average value to plot the figure. Moreover, for the
sake of fairness, we use the same set of prompts for different models during inference.

Figure 2(b-h) illustrates that with smaller inference noises σ(≤ 0.2), model performance is relatively
stable, indicating that training with label noise does not necessarily improve robustness compared
to standard training. However, for larger noise levels σtest = 0.5, 1, models trained with these noises
slightly surpass the baselines in handling such noise, as depicted in Figure 2(g)(h). Specifically, in
subfigure (g) for σtest = 0.5, the model trained with σtrain = 0.2, 0.5 demonstrates significantly
improved robustness over the baseline. Meanwhile, for σtest = 1 in subfigure (h), the model trained
with σtrain = 0.5, 1 shows markedly enhanced robustness compared to others, highlighting how
incorporating label noise as data augmentation can bolster this robustness.

5 CONCLUSION AND FUTURE WORK

This paper presents a comprehensive study on transformers’ in-context learning with label noises,
using simple function classes. Our experiments and analysis show that transformers retain their in-
context learning efficiency amidst various types and levels of label noise. Furthermore, we discover
that introducing similar noises into the training set enables good convergence and potentially en-
hances the robustness of transformer models. Our findings enhance understanding of transformers’
adaptability to label noise, raising several intriguing research questions for further investigation. In
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the next version, we intend to expand our experimental analysis to include additional tasks, model
sizes, and input dimensions.
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A ADDITIONAL RELATED WORK

Understanding In-context Learning. The mysterious ability of in-context learning (Brown et al.,
2020; Dong et al., 2023a), which typically occurs in attention-based model architectures like trans-
formers (Vaswani et al., 2017), has attracted significant research interest in understanding its un-
derlying mechanism and designing better learning algorithms (Lu et al., 2023; Min et al., 2022).
Without modifying model parameters, these models can conduct various downstream tasks with a
few input-output pairs as demonstrations included before the test input. One popular thread on un-
derstanding this ability interprets the inference with in-context demonstrations as implicit gradient
decent (Akyürek et al., 2023; Von Oswald et al., 2023; Bai et al., 2023). Specifically, they showed
that transformers can learn the specified task through these demonstrations with implicit optimiza-
tion in the hidden spaces of transformers. Besides, there are also interpretations of in-context learn-
ing through various perspectives, like Bayes inference (Xie et al., 2022) and PAC-learnability (Wies
et al., 2023).

Noisy label learning. Modern deep learning methods commonly face the presence of noisy labels
in the training data, since data collection and annotation may be costly and biased (Deng et al., 2009).
Such noises in labels may be symmetric, asymmetric, and even from the open set that is not con-
tained in the training classes (Cordeiro and Carneiro, 2020). To tackle this issue, numerous efforts
have been made to robustify the training process against such noises. Typical approaches include
estimating noise transition matrix (Patrini et al., 2017), designing robust loss functions (Manwani
and Sastry, 2011; Wang et al., 2019), sample weighting (Guo et al., 2018; Wang et al., 2018) and
selection (Jiang et al., 2018). Though broadly explored in this literature, learning with noisy labels
is still an open problem in modern machine learning research (Song et al., 2022). Moreover, there
are also concurrent threads toward studying the robustness against label noise for the text modu-
lar (Garg et al., 2021; Zhu et al., 2022). Despite broad explorations, few works have investigated
the robustness of in-context learning with noisy labels. The closest work to ours is (Wang et al.,
2023b), which compared the robustness of in-context learning and supervised learning with the text
classification tasks, and found that in-context learning is more robust than supervised learning. In
addition, by studying the ICL ability of transformers through noisy linear regression with standard
Gaussian distribution, (Garg et al., 2023) also showed that transformers outperform toy baselines in
this specific setting. In this work, we take steps further to systematically investigate the robustness
of in-context learning against various label noise settings, including both the train and inference
phases, and various types and magnitudes of noises.

Language model safety and alignment. With the milestone success of the fast-paced develop-
ment of large language models (LLMs), concerns regarding their potential for harmful generation
and malicious usage have emerged (Bommasani et al., 2022; Chen and Shu, 2023; Liu et al., 2023),
which are typically referred to as the jailbreaking issue (Zou et al., 2023; Wei et al., 2023a; Dong
et al., 2023b). Such risks further extend to the in-context learning scenario, as recent work (Wang
et al., 2023a; Wei et al., 2023b) showed, it is possible to manipulate the safety and alignment of
language models by maliciously inducing noisy labels in the demonstrations. Therefore, it is of
significance to study the robustness of in-context learning with label noises. Moreover, different
from defense against conventional adversarial noises (Goodfellow et al., 2014; Carlini and Wagner,
2017b; Liu et al., 2022; Huang et al., 2023; Chen et al., 2023) among which adversarial training
(AT) (Madry et al., 2017; Zhang et al., 2019) that adding adversarial noises in the training loops are
shown to be the most effective among various defense methods (Carlini and Wagner, 2017a; Athalye
et al., 2018), it is recently shown that AT may not be an effective defense (Jain et al., 2023) for LLMs.
Such difference further underscores the challenge of the interpretability of internal mechanism (Is-
lam et al., 2021; Räuker et al., 2023) and adversarial examples (Tsipras et al., 2018; Wang et al.,
2020; Li et al., 2023) in the context of LLMs. In this work, we explore a similar problem: whether
adding label noises in the training demonstrations can enhance the corresponding robustness during
inference.

B EVALUATION DETAILS

To evaluate the robustness of transformers, similar to Garg et al. (2023) we also compare its perfor-
mance with a few simple baselines. These include (a) the least squares estimator, which computes
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the minimum-norm linear fit to the in-context examples (xi, yi), (b) K-Nearest Neighbors, involv-
ing the averaging of yi values for the n nearest neighbors of xquery , and (c) the average of the
values yixi to estimate w and calculate the inner product of this estimate with xquery . Note that the
least squares offers an optimal estimator for this problem and a lower bound for the best achievable
error, while the other two baselines offer a consistent, computationally simpler estimator.

Furthermore, to assess model robustness, we employ the normalized squared error

LP =
(M(P )− wTxquery)

2

d

. Considering the presence of label noise, we define the model achieves the satisfactory accuracy if
LP ≤ 0.5, thereby establishing a threshold for the noise level under which the ICL model maintains
robustness and providing a criterion to compare between ICL and baseline models.

C MORE EXPERIMENTS RESULTS IN SECTION 3

C.1 MORE VISUALIZATION AND NUMERICAL RESULTS

In this section, we provide more experiment results discussed in Section 3.

σtest Gaussian Uniform Exponential Poisson

0.1

0.2

0.5

1.0

Figure 3: Complete robustness Comparison under different noise types and magnitudes.

Table 2: Average Squared Error with Different Number of ICL Examples. The results that show
satisfactory accuracy are shown in bold.
# Examples Gaussian Uniform Exponential Poisson

σ 0.4 0.5 0.6 0.7 0.8 1 1.1 1.2 1.3 1.4 0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6

25 1.16 1.97 1.92 3.32 3.23 1.07 1.10 1.09 1.07 2.20 0.42 0.58 1.48 1.29 1.69 0.42 0.58 1.48 1.29 1.69
30 0.58 0.91 1.25 2.13 2.41 0.58 0.64 0.74 0.96 0.88 0.14 0.20 0.39 0.85 0.85 0.14 0.20 0.39 0.85 0.85
35 0.39 0.76 0.87 1.15 2.12 0.39 0.58 0.46 0.82 0.71 0.12 0.27 0.52 0.82 1.17 0.12 0.27 0.52 0.82 1.17
40 0.39 0.72 0.96 1.70 1.61 0.36 0.35 0.74 0.66 0.89 0.13 0.17 0.48 0.88 0.97 0.13 0.17 0.48 0.88 0.97
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C.2 NON-I.I.D. NOISES

In this section, we further extend our experiments to the non-i.i.d. noises scenario. Specifically, we
replace the i.i.d. label noises with some outlier demonstrations, which is a particular case of non-i.i.d.
noises, and analyze how the transformers respond to such non-i.i.d noise in the demonstrations.

C.3 EXPERIMENT SET-UP

In this experiment, we focus on the class of noisy linear functions F = {fw|fw(x) = wTx +
⊮outlier ∗ ϵ, w ∈ Rd} in d = 20 dimensions, where noises are only injected into demonstrations of
outliers. Similar to the construction of the noisy demonstrations, we sample x1, · · · , xk, xquery

from the isotropic Gaussian distribution N(0, Id). Then, we randomly select m outliers S =
{i1, · · · , im}, and generate i.i.d. Poisson noise {ϵi1 , · · · , ϵim} with noise magnitude σ. Sub-
sequently, each yi = wTxi + ⊮i∈S ∗ ϵi is computed. Finally, the prompt P is constructed as
P = (x1, y1, x2, y2, · · · , xk, yk, xquery).

We meticulously design the number of outliers m, since the efficacy of our results is based on having
more in-context examples than outliers. When outliers otherwise outnumber in-context examples,
they yield a different function, divergent from the one intended for testing on the query input.

C.4 EXPERIMENT RESULTS

We present the results with small multiples in Figure 4.Overall, the transformer model shows supe-
rior performance than other baselines, which is similar to the results of i.i.d. noises presented in
Section 3 and shows its consistent robustness against such noises, which we elaborate on below.

Figure 4: In-context learning on prompts with outliers. We evaluate the trained model on prompts
with outliers in two cases. (1) On the rows, we explored the effect of the number of outliers on
performance, and (2) on the columns, we explored the effect of the magnitude of outliers on perfor-
mance.
Outliers of different magnitudes and equal quantity. Analyzing different columns in Figure 4
where the noise of varying magnitudes was introduced to a specified number of prompt outputs, we
can see that the trained model exhibits greater robustness and stability compared to baseline models,
particularly as the noise magnitude escalates. Notably, the lower bound of the 0.9 confidence interval
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closely aligns with the actual data when both the noise magnitude and the number of outliers are
minimal, suggesting that the model maintains high prediction accuracy under these conditions.

Different quantities of outliers with uniform magnitude. On the other hand, from different rows
in Figure 4 where the sub-figures involve different numbers of outliers and a consistent magnitude
within the prompts, we can see an increase in the trained model’s robustness and stability as the
number of outliers rises. In addition, contrary to the findings in Garg et al. (2023), the error curve
does not follow the pattern of the double descent error curve typically observed in ordinary least
squares analysis. This suggests a different between the i.i.d. noisy label regression setting and the
non-i.i.d. scenario.
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