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Abstract

Recently, the mysterious In-Context Learning (ICL) ability of Transformer archi-
tecture, particularly in large language models, has garnered considerable research
interest for its underlying mechanisms and the development of more effective
learning algorithms. Despite this, the resilience of Transformers’ in-context learn-
ing capabilities in the face of noisy samples, both in training corpora and prompt
demonstrations, remains underexplored. In this paper, we address this gap by ex-
amining the robustness of ICL Transformers with noisy labels, employing a linear
function class for analysis. Our study extends beyond existing research, which
predominantly focuses on label noise during the inference phase of ICL, by also
considering the effects of such noise during the training phase. Furthermore, we
explore this robustness in scenarios beyond i.i.d. label noises. Overall, our findings
contribute novel insights into the robustness of Transformer models against label
noises, laying the groundwork for further research in this area. Our code is available
at https://github.com/InezYu0928/in-context-learning-CS182.

1 Introduction

In recent years, Large Language Models (LLMs) have achieved significant success across various
tasks in real-world applications. Transformer [38], as the typical backbone architecture, also emerges
an intriguing ability acknowledged as In-Context Learning (ICL) [5, 12] that the model can learn a
new task with only a few input-output pairs demonstrated during inference without modifying any
model parameters. Such mysterious property of transformers has attracted great research interests
in understanding this ability from various perspectives like simple function classes [14], implicit
gradient descent [39, 3].

However, as large language models like Vicuna [52] and Llama2 [36] were trained over documents
collected in the real world without sufficient supervision, such documents might contain noisy
information, which could affect the ability of these models during in-context inference. Moreover,
recent works [46, 31] also showed that the output of ICL might be significantly manipulated by
the label of demonstrations in the prompts. Motivated by these observations, in this work, we
attempt to characterize and understand such ICL ability of transformers with noisy labels during
both the training and inference phases in a toy model. Noisy label learning [29] has a wide breadth of
literature in modern machine learning research [49, 43, 48], as dataset collection may be costly and
noisy [11]. Therefore, the noisy label scenario in terms of ICL, is more practical and deserves a good
understanding for advancing the safety and alignment of large language models, as discussed above.

Though there is a series of works exploring the noisy label setting of language models [15, 53],
few works have studied such problems systematically specified to in-context learning. In this work,
unlike [14] that only consider one certain label noise distribution during the inference phase of ICL,
we also study the influence of such noises during the training phase of transformers and show that the
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training of transformers is fairly robust against such noises. Specifically, we find that adding label
noises in the training set would not significantly affect their in-context inference ability. Besides,
we also conduct systematic experiments in terms of various noise distributions and magnitudes to
show that transformers are more robust against label noises than simple baselines, indicating their
superior label-noise robustness during inference. In addition, we explore further problems including
whether adding label noises in the demonstrations during training can enhance such robustness during
the inference phase. Surprisingly, we find that adding moderate label noises in the demonstrations
used in training, which can be regarded as a kind of data augmentation, cannot effectively enhance
the robustness of transformers during inference. This result is contrary to existing viewpoints like
adversarial training [26] where adding adversarial noises into training samples can enhance the
model’s robustness against such attacks [6]. This observation may correlated to the fundamental
difference between the underlying mechanism of supervised learning and in-context learning. Finally,
we extend our experiments to the scenarios of non-i.i.d. (independent and identically distribution)
noises like anomaly outliers and show that the transformers are still robust in such noises.

Overall, our fruitful and comprehensive experiments provide interesting findings and conclusions for
understanding the robustness of in-context learning with noisy labels. To summarize, we make the
following contributions in this paper:

• We reveal that the in-context learning ability of transformers is fairly robust to the label
noises in the training set in Section 4, which can not significantly impact its in-context
learning performance.

• We conduct systematic experiments showing that transformers are robust to various types
and magnitudes of label noises during in-context inference in Section 5. In addition, we
reveal inducing the same noises in the training set cannot enhance such robustness effectively
in Section 6, which is an unexpected phenomenon.

• We further extend experiments over i.i.d. label noises to the non-i.i.d. scenarios and show
that transformers are still robust to such noise distributions in Section 7.

2 Related work

Understanding In-context Learning. The mysterious ability of in-context learning [5, 12], which
typically occurs in attention-based model architectures like transformers [38], has attracted signif-
icant research interest in understanding its underlying mechanism and designing better learning
algorithms [25, 28]. Without modifying model parameters, these models can conduct various down-
stream tasks with a few input-output pairs as demonstrations included before the test input. One
popular thread on understanding this ability interprets the inference with in-context demonstrations as
implicit gradient decent [1, 39, 3]. Specifically, they showed that transformers can learn the specified
task through these demonstrations with implicit optimization in the hidden spaces of transformers.
Besides, there are also interpretations of in-context learning through various perspectives, like Bayes
inference [50] and PAC-learnability [47].

Noisy label learning. Modern deep learning methods commonly face the presence of noisy labels
in the training data, since data collection and annotation may be costly and biased [11]. Such noises in
labels may be symmetric, asymmetric, and even from the open set that is not contained in the training
classes [10]. To tackle this issue, numerous efforts have been made to robustify the training process
against such noises. Typical approaches include estimating noise transition matrix [30], designing
robust loss functions [27, 44], sample weighting [17, 43] and selection [21]. Though broadly explored
in this literature, learning with noisy labels is still an open problem in modern machine learning
research [35]. Moreover, there are also concurrent threads toward studying the robustness against
label noise for the text modular [15, 53].

Despite broad explorations, few works have investigated the robustness of in-context learning with
noisy labels. The closest work to ours is [42], which compared the robustness of in-context learning
and supervised learning with the text classification tasks, and found that in-context learning is more
robust than supervised learning. In addition, by studying the ICL ability of transformers through noisy
linear regression with standard Gaussian distribution, [14] also showed that transformers outperform
toy baselines in this specific setting. In this work, we take steps further to systematically investigate
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the robustness of in-context learning against various label noise settings, including both the train and
inference phases, and various types and magnitudes of noises.

Language model safety and alignment. With the milestone success of the fast-paced development
of large language models (LLMs), concerns regarding their potential for harmful generation and
malicious usage have emerged [4, 8, 23], which are typically referred to as the jailbreaking issue [54,
45, 13]. Such risks further extend to the in-context learning scenario, as recent work [40, 46, 32]
showed, it is possible to manipulate the safety and alignment of language models by maliciously
inducing noisy labels in the demonstrations. Therefore, it is of significance to study the robustness
of in-context learning with label noises. Moreover, different from defense against conventional
adversarial noises [16, 7, 24, 18, 9] among which adversarial training (AT) [26, 51] that adding
adversarial noises in the training loops are shown to be the most effective among various defense
methods [6, 2], it is recently shown that AT may not be an effective defense [20] for LLMs. Such
difference further underscores the challenge of the interpretability of internal mechanism [19, 34]
and adversarial examples [37, 41, 22] in the context of LLMs. In this work, we uncover a similar
phenomenon: adding label noises in the training demonstrations may not enhance the corresponding
robustness during inference, which further underscores the safety concerns in terms of label noises.

3 Preliminaries

Following an elementary research [14] that studies the in-context learning ability of transformers
through a few simple function classes, we consider similar settings specified to the noisy linear
regression task. We start with illustrating the vanilla training and inference pipeline without any label
noises, and the specific settings for different experiments are detailed in the following corresponding
sections.

Transformer training with in-context demonstrations. Given the class of linear functions F =
{fw|fw(x) = wTx,w ∈ Rd}, each sample in the training set for the transformer can be formulated
as P = (x1, fw(x1), · · · , xk, fw(xk)), where the input samples are sampled from the isotropic
Gaussian distribution xi ∼ N(0, Id), and the function parameter w is sampled from the isotropic
Gaussian distribution w ∼ N(0, Id). We adopt the GPT-2 [33] model architecture, which is the same
as [14]. However, due to computational limitations, we apply the toy configuration provided in [14]
with 5000 training epochs.3

Transformer inference with in-context demonstrations. After training the transformer model
Mθ(·) with its parameters θ by the training set above, the ICL inference of the model can be
formulated as prompting P = (x1, fw(x1), · · · , xk, fw(xk), xq), where {(xi, fw(xi)} are the in-
context demonstrations and xq is the query input. For the sake of evaluation, the ground truth function
fw is randomly sampled from F , and {xi}, xq are still sampled from N(0, Id). Note that for better
illustration and alignment with the original experiments conducted in [14], we apply the pre-trained
model4 to conduct all inference-only experiments (i.e., standard training without label noises in the
training set) in Section 5 and 7, which is larger than our trained toy models. We also tried to apply
the same model size and training epochs but failed due to the computational limitations.

Note that in this paper, we may both consider the cases in which noises exist in the labels fw(xi) + ϵ
for both train or inference phases, which are specified in the corresponding sections.

4 Train transformers with noisy labels

In this section, we explore the robustness of transformers against label noises during training for
in-context learning ability.

3The complete basic configurations for our experiments are listed at https://github.com/InezYu0928/
in-context-learning-1/blob/main/src/conf/toy.yaml.

4Checkpoint available at https://github.com/dtsip/in-context-learning/releases/download/
initial/models.zip.
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4.1 Experiment set-up.

To construct a noisy training set, instead of vanilla demonstrations {xi, fw(xi)}, we add Gaussian
noises to the labels as {xi, fw(xi) + ϵi} with ϵi ∼ N(0, σ2). In this experiment, we compare
σ ∈ {0.01, 0.05, 0.1, 0.2, 0.5, 1}. In the following, we first show that the training of transformers
can still converge well with moderate label noises, then further compare their performance with
training without label noises. Note that in this set of experiments, the labels of in-context inference
for evaluation are without noise.

4.2 Training convergence with label noises

(a) Train loss curve comparison. (b) In-context learning performance comparison.

Figure 1: Train loss curve and in-context learning performance comparison for models trained with
different label noise magnitudes σ.

For each σ, we train the model with corresponding label noise distribution and plot the training loss
curve in Figure 1(a) with each line representing a model. Note that the model associated with σ = 0
represents the case of no-label noise, which is exactly the standard training setting. It is clear that
for small label noises (σ < 0.5), the training is well converged and the final loss is very close to
the standard training. Even in the case of large noise variance (σ = 0.5, 1), the training can still
converge to a certain extent. This shows that the training of transformers is fairly robust against noisy
demonstrations.5

4.3 In-context learning performance evaluation

With these trained models, we further compare their in-context learning performance with the standard
trained model, as shown in Figure 1(b). We also provide a clearer numerical comparison in Table 1.

Table 1: Final training loss and squared loss of 10 in-context demonstrations comparison for noisy
label training with different σ.

σ 0 0.01 0.05 0.1 0.2 0.5 1

Final training loss 1.83 1.84 1.87 1.91 2.08 2.60 3.53
Squared error (w/10 ICL examples) 0.89 0.98 0.98 0.99 0.99 1.08 2.50

Similar to the observation above, the squared errors of in-context learning of the models trained over
σ < 0.5 are almost the same as the standard one, showing again their robustness against such label
noises in the training set. Besides, the model with σ = 0.5 performs comparable with the standard
model, while the model with σ = 1 exhibits worse yet still has non-trivial in-context learning ability.

Overall, our findings in this section suggest that even though noises exist in the labels of the
demonstrations, the transformers can still generalize well to perform in-context inference.

5Our trained checkpoints are available at https://drive.google.com/drive/folders/
1-Z2-lJMQ8QjQIVaV0eJdDPlQtBxUpRec
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5 In-context inference with noisy labels

We now turn our attention to the inference stage of in-context learning with different distributions
of label noises, including Gaussian, Uniform, Exponential, and Poisson distributions. The overall
experiment pipeline can be described as producing noise with different distributions, adding it to each
demonstration in the prompts, and evaluating the pre-trained model’s [14] performance.

5.1 Experiment set-up

Prompt design. In this study, we still focus on the class of noisy linear functions F =
{fw|fw(x) = wTx + ϵ, w ∈ Rd}, in d = 20 dimensions. Similar to the construction of the
noisy training set (Section 4), we sample x1, · · · , xk, xquery from the isotropic Gaussian distribu-
tion N(0, Id) and the i.i.d. noise ϵ1, · · · , ϵk from various distributions with different noise mag-
nitudes. Subsequently, each yi = wTxi + ϵi is computed, and the prompt P is constructed as
P = (x1, y1, x2, y2, · · · , xk, yk, xquery).

Noise Distributions. In this experiment, we consider the following noise distributions: (1) Gaussian
distribution, ϵi ∼ N(0, σ2); (2) Uniform distribution, ϵi ∼ U(−

√
3σ,

√
3σ), where U(·, ·)

represents the uniform distribution; (3) Exponential distribution, ϵi = ϵ̂i − 1
σ and ϵ̂i ∼ Exp( 1σ ).

Note that by standardizing the noise, we produce noise that has zero means and captures the moral
of the exponential distribution Exp(·); (4) Poisson distribution, ϵi = ϵ̂i − σ2 and ϵ̂i ∼ P (σ2).
Similarly, by standardizing the noise, we produce noise that has zero mean and captures the moral of
the Poisson distribution P (·).
Baselines. To provide context for evaluating our trained model, we compare its performance with
other simple learning algorithms, similar to [14]. These include (a) the least squares estimator,
which computes the minimum-norm linear fit to the in-context examples (xi, yi), (b) K-Nearest
Neighbors, involving the averaging of yi values for the n nearest neighbors of xquery, and (c) the
average of the values yixi to estimate w and calculate the inner product of this estimate with xquery .
Note that the least squares offers an optimal estimator for this problem and a lower bound for the best
achievable error, while the other two baselines offer a consistent, computationally simpler estimator.

Robustness Evaluation. To assess model robustness, we employ the normalized squared error
LP =

(M(P )−wT xquery)
2

d . Considering the presence of label noise, we define the model achieves the
satisfactory accuracy if LP ≤ 0.5, thereby establishing a threshold for the noise level under which
the ICL model maintains robustness and providing a criterion to compare between ICL and baseline
models.

5.2 Experiment results

In this section, we employ the loss functions introduced above to evaluate the transformer model and
baseline models’ robustness across different noise types and varying levels of label noise.

Robustness threshold of label noise with different noise distribution. In Table 2, we report some
examples of test accuracy under label noise, considering various distributions and standard deviations.
We report the complete results over various numbers of in-context samples and noise distributions in
Table 4 in Appendix A. In addition, we plot the representative comparison of the transformer and
other baselines under these settings in Figure 2 and leave the complete figures for all σ in Figure 5 in
Appendix A.

Table 2: Average Squared Error with Different Number of ICL Examples. The results that show
satisfactory accuracy are shown in bold. Complete results are shown in Table 4.

# Examples Gaussian Uniform Exponential Poisson

σ 0.4 0.5 0.6 0.7 0.8 1 1.1 1.2 1.3 1.4 0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6

25 1.16 1.97 1.92 3.32 3.23 1.07 1.10 1.09 1.07 2.20 0.42 0.58 1.48 1.29 1.69 0.42 0.58 1.48 1.29 1.69
30 0.58 0.91 1.25 2.13 2.41 0.58 0.64 0.74 0.96 0.88 0.14 0.20 0.39 0.85 0.85 0.14 0.20 0.39 0.85 0.85
35 0.39 0.76 0.87 1.15 2.12 0.39 0.58 0.46 0.82 0.71 0.12 0.27 0.52 0.82 1.17 0.12 0.27 0.52 0.82 1.17
40 0.39 0.72 0.96 1.70 1.61 0.36 0.35 0.74 0.66 0.89 0.13 0.17 0.48 0.88 0.97 0.13 0.17 0.48 0.88 0.97
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Figure 2: Robustness Comparison under Different Noise Types and σ = {0.1, 1}. The X-axis
represents the number of in-context examples. A complete comparison for all σ is shown in Figure 5.

Gaussian (σ = 0.1) Uniform (σ = 0.1) Exponential (σ = 0.1) Poisson (σ = 0.1)

Gaussian (σ = 1) Uniform (σ = 1) Exponential (σ = 1) Poisson (σ = 1)

Specifically, the robustness is examined across four distinct noise distributions at moderate levels.
Notably, our finding indicates that under most error levels, loss functions associated with symmetrical
distributions exhibit swifter learning in comparison to those with asymmetrical distributions. However,
when confronted with higher noise levels, the ICL model exhibits a challenge in ignoring label noise.
This observation aligns with intuition, as inference in noisy linear regression mirrors the least squares
solution with appropriately structured L2 regularization.

Drawing from these discoveries, we deduce the presence of a distinct threshold for each noise type,
beyond which the transformer model’s performance cannot outperform baselines. Once the noise
level, denoted as σ, surpasses this threshold, the noise perceptibly impacts the model, rendering it
non-negligible in its influence on performance. From the experiment results (detailed in Appendix A),
we estimate such thresholds for different noise distributions and summarize them in Table 3.

Table 3: Estimated robustness threshold of label noise σ to perform comparably with the case of no
noise.

Noise Distribution Gaussian Uniform Exponential Poisson
Threshold σ 0.45 1.10 0.39 0.43

5.3 Further observations

As shown in Figure 2, under the condition of label noise falling below a predefined threshold (except
the manifest fact that the ICL model always outperforms 3-Nearest Neighbors and average method),
we highlight several noteworthy observations:

Inadequate in-context examples. When the quantity of in-context examples is below the input
dimension of d = 20, the loss of the trained model closely mirrors that of the least squares estimator.

Near input-dimension number of examples. As the number of in-context examples approaches
the input dimension of d = 20, the least-square estimator exhibits significant errors, while the ICL
model continues to improve its accuracy.

Sufficient in-context examples. As the number of in-context examples surpasses d = 20, the
performance of the ICL model shows a rapid and notable improvement. Furthermore, in scenarios
where label noise conforms to uniform distributions, the performance of the ICL model even surpasses
that of the least-square estimator.

These nuanced findings contribute to a comprehensive understanding of the ICL’s robustness under
various conditions.
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(a) σtest = 0.01 (b) σtest = 0.05 (c) σtest = 0.1

(d) σtest = 0.2 (e) σtest = 0.5 (f) σtest = 1

Figure 3: Noisy in-context learning performance comparison for models trained with different label
noise magnitudes σ. Each figure represents an inference noise level, each line represents a model.
The X-axis represents the number of in-context examples.

6 Noisy inference with noisy training

In this section, we study whether inducing some moderate label noises in the training set can enhance
the robustness of transformers during in-context inference. Motivated by the fact that adversarial
training methods [26, 51] which adds adversarial noises in the training sample can enhance the
model’s adversarial robustness [6, 2], we wonder if the robustness of transformer against in-context
label noises can be improved by adding the same noises in the training demonstrations, which can
be viewed as a type of data augmentation. To be more specific, we conduct ICL experiments on the
linear function task with several inference noise levels for different noisy-trained models.

6.1 Experiment set-up

Similar to experiments in the sections above, we conduct in-context inference with different inference
Gaussian noise σ ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.5, 1} (the same as what we used to train our model)
using models separately trained in Section 4. To ensure that the experimental results are convincing
and reproducible, we repeated the experiment 10 times and took an average value to plot the figure.
Moreover, for the sake of fairness, we use the same set of prompts for different models during
inference. We construct prompts as what we do in section 5, i.e. adding Gaussian noise into the output
of each demonstration pair, and the noise levels are selected in σ ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.5, 1}.

6.2 Experiment results

In this experiment, we conduct in-context inference with label noises across different training models.
The results are shown in Figure 3, where we observe that for smaller inference noises σ(≤ 0.2), the
model’s performance remains relatively consistent, i.e. the models trained with label noises cannot
enhance such robustness over standard training. The only exception is for large noises σtest = {0.5, 1},
where the models trained within these noise levels can slightly outperform the baselines in terms
of these large noises (Figure 3(e)(f)). However, as discussed in Section 4, training with such large
noise levels cannot converge well and decreases the ICL ability for the clean prompts. Furthermore,
as shown in other sub-figures, these two models do not exhibit better robustness in terms of other
noises (σtest ≤ 0.2). Therefore, we suggest that adding extremely large noises to enhance the model’s
robustness against label noises is not a practical solution, and adding moderate noises in the training
set cannot effectively improve such robustness.
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6.3 Discussion

As discussed above, a counter-intuitive finding of our study is that introducing moderate label
noises in the training demonstrations can not effectively enhance the robustness of transformers
during in-context inference. This outcome appears to be quite contradictory to existing viewpoints.
For instance, in basic computer vision tasks, adding noise to training images (such as adversarial
perturbations) typically results in improved robustness against similar noise distributions during
inference. Contrarily, in our study, incorporating the same Gaussian noise distribution into input data
does not yield increased robustness, and in some cases, even diminishes it.

This unexpected result may be attributed to the fundamental differences between the mechanisms
underlying supervised learning and ICL. In supervised learning, the objective is to directly optimize
performance on tasks using the data itself, such as in classification and regression tasks. In contrast,
ICL demands more complex reasoning about underlying rules within the data, often with minimal
guidance. For instance, ICL involves identifying mapping classes, as explored in this research. In
such scenarios, noise injection as data augmentation may effectively improve such robustness. Instead,
it could act as a disruption, obscuring the underlying rules and broadening the problem domain,
potentially leading to confusion in the model’s training process.

7 Extrapolating beyond i.i.d. noises

Finally, in this section, we further extend our experiments to the non-i.i.d. noises scenario. Specifically,
we replace the i.i.d. label noises with some outlier demonstrations, which is a particular case of non-
i.i.d. noises, and analyze how the transformers respond to such non-i.i.d noise in the demonstrations.

7.1 Experiment set-up

In this experiment, we focus on the class of noisy linear functions F = {fw|fw(x) = wTx +
⊮outlier ∗ ϵ, w ∈ Rd} in d = 20 dimensions, where noises are only injected into demonstra-
tions of outliers. Similar to the construction of the noisy training set (Section 4), we sample
x1, · · · , xk, xquery from the isotropic Gaussian distribution N(0, Id). Then, we randomly select m
outliers S = {i1, · · · , im}, and generate i.i.d. Poisson noise {ϵi1 , · · · , ϵim} with noise magnitude
σ. Subsequently, each yi = wTxi + ⊮i∈S ∗ ϵi is computed. Finally, the prompt P is constructed as
P = (x1, y1, x2, y2, · · · , xk, yk, xquery).

We meticulously design the number of outliers m, since the efficacy of our results is based on having
more in-context examples than outliers. When outliers otherwise outnumber in-context examples,
they yield a different function, divergent from the one intended for testing on the query input.

7.2 Experiment results

We present the results with small multiples in Figure 4 (detailed in Appendix B). Overall, the
transformer model shows superior performance than other baselines, which is similar to the results of
i.i.d. noises presented in Section 5 and shows its consistent robustness against such noises, which we
elaborate on below.

Outliers of different magnitudes and equal quantity. Analyzing different columns in Figure 4
where the noise of varying magnitudes was introduced to a specified number of prompt outputs, we
can see that the trained model exhibits greater robustness and stability compared to baseline models,
particularly as the noise magnitude escalates. Notably, the lower bound of the 0.9 confidence interval
closely aligns with the actual data when both the noise magnitude and the number of outliers are
minimal, suggesting that the model maintains high prediction accuracy under these conditions.

Different quantities of outliers with uniform magnitude. On the other hand, from different rows
in Figure 4 where the sub-figures involve different numbers of outliers and a consistent magnitude
within the prompts, we can see an increase in the trained model’s robustness and stability as the
number of outliers rises. In addition, contrary to the findings in [14], the error curve does not follow
the pattern of the double descent error curve typically observed in ordinary least squares analysis.
This suggests a different between the i.i.d. noisy label regression setting and the non-i.i.d. scenario.
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Figure 4: In-context learning on prompts with outliers. We evaluate the trained model on prompts with
outliers in two cases. (1) On the rows, we explored the effect of the number of outliers on performance,
and (2) on the columns, we explored the effect of the magnitude of outliers on performance.

8 Further discussions and limitations

This paper uncovers some intriguing properties of transformers in terms of the intersection of in-
context learning and label noises. Our distilled findings reveal a dual nature. On the one hand,
Transformers demonstrate commendable robustness during both training and inference phases against
various types of label noises. On the other hand, our study indicates a pessimistic aspect where
introducing label noise as a data augmentation strategy during training does not necessarily enhance
inference robustness. These observations uncover the fundamental particular property of in-context
learning with transformers, warranting further in-depth theoretical and empirical exploration. How-
ever, we acknowledge several limitations of this work. First, The experiments were confined to linear
regression tasks, which is relatively simple. Moreover, incorporating a theoretical analysis would
provide a stronger foundation for our findings on in-context learning robustness. Additionally, further
trials and methodologies to enhance transformer robustness could be encompassed, particularly by
examining the impact of expanded model sizes.

9 Conclusion

In this paper, we thoroughly investigate the robustness of transformers’ in-context learning capa-
bility when confronted with noisy labels across a spectrum of scenarios. Our study reveals that
transformers display a significant degree of robustness against label noise within training datasets,
thereby maintaining their in-context learning efficiency. Furthermore, through systematic experiments
detailed in the previous section, we demonstrate that transformer models consistently uphold their
robustness across a variety of label noise types and magnitudes during in-context inference. Intrigu-
ingly, our findings also uncover that introducing similar noises into the training set does not enhance
this robustness, thereby presenting a remarkable observation. Finally, we extend the scope of our
research by examining scenarios that deviate from the i.i.d. label noise paradigm. The outcomes in
non-i.i.d. scenarios indicate that Transformer models consistently persist in demonstrating robustness
amidst such varied noise distributions. This comprehensive investigation significantly contributes
to a nuanced understanding of Transformer models’ capacity to navigate and adapt to label noise,
underscoring their robustness in diverse operational contexts.
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A Complete results in Section 5

We provide detailed complementary experiment results in the following Table 4 and Figure 5.

Figure 5: Complete Robustness Comparison under Different Noise Types for Figure 2
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B Complete results in Section 7

We provide detailed complementary experiment results in the following Figure 6.

Figure 6: Complete experiment results of in-context learning on prompts with outliers. We evaluate
the trained model on prompts with outliers in two cases. (1) On the rows, we explored the effect
of the number of outliers on performance, and (2) on the columns, we explored the effect of the
magnitude of outliers on performance.

15


	Introduction
	Related work
	Preliminaries
	Train transformers with noisy labels
	Experiment set-up.
	Training convergence with label noises
	In-context learning performance evaluation

	In-context inference with noisy labels
	Experiment set-up
	Experiment results
	Further observations

	Noisy inference with noisy training
	Experiment set-up
	Experiment results
	Discussion

	Extrapolating beyond i.i.d. noises
	Experiment set-up
	Experiment results

	Further discussions and limitations
	Conclusion
	Complete results in Section 5
	Complete results in Section 7

